1
0

monkey_fit.h 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. #ifndef __MONKEY_FIT__
  2. #define __MONKEY_FIT__
  3. #include <cmath>
  4. #include <iterator>
  5. #include <map>
  6. #include <deque>
  7. #include <algorithm>
  8. #include "base_data.h"
  9. struct monkey_fit
  10. {
  11. virtual ~monkey_fit(){}
  12. template<typename T> static double get_probab_max(T it,T ite,int sum,int N=3)
  13. {
  14. sum/=5;
  15. sum=std::max(3,sum);
  16. std::vector<std::tuple<T,T,float>> p;
  17. if(N==0)
  18. {
  19. auto it0=it;
  20. for(int i=0;it0!=ite;++it0,++i)
  21. {
  22. if(i%10==0) printf("\n");
  23. printf("%5d:%2d,",it0->first,it0->second);
  24. }
  25. printf("\n");
  26. }
  27. int s=0;
  28. for(auto i1=it;it!=ite;)
  29. {
  30. for(;s<sum && i1!=ite;++i1)
  31. s+=i1->second;
  32. if(s<sum) break;
  33. p.push_back(std::make_tuple(it,i1,1.*s/(std::prev(i1)->first-it->first+1)));
  34. s-=it->second; ++it;
  35. }
  36. std::sort(p.begin(),p.end(),[](const std::tuple<T,T,int>&l,const std::tuple<T,T,int>&r){
  37. return 1.*std::get<2>(l) > 1.*std::get<2>(r);
  38. });
  39. int i=1;
  40. auto it1=std::get<0>(p[0]);
  41. auto it2=std::prev(std::get<1>(p[0]));
  42. for(;i<(int)p.size();++i)
  43. {
  44. if(std::get<2>(p[i])!=std::get<2>(p[i-1]))
  45. break;
  46. if(std::get<0>(p[i])->first < it1->first)
  47. it1=std::get<0>(p[i]);
  48. if(std::prev(std::get<1>(p[i]))->second > it2->second)
  49. it2=std::prev(std::get<1>(p[i]));
  50. }
  51. ++it2;
  52. double rc=0;
  53. int cc=0;
  54. int x=0;
  55. for(;it1!=it2;++it1)
  56. {
  57. rc+=it1->first*it1->second;
  58. cc+=it1->second;
  59. if(N==0)
  60. {
  61. if(x++%10==0) printf("\n");
  62. printf("%5d:%2d,",it1->first,it1->second);
  63. }
  64. }
  65. if(N==0)
  66. printf("\n");
  67. return rc/cc;
  68. }
  69. int round(double value)
  70. {
  71. return (value > 0.0)?floor(value + 0.5):ceil(value - 0.5);
  72. }
  73. virtual void reset(double monkey_speed = 0){}
  74. virtual void push(double time_second,double dist_meter) {}
  75. virtual double get_K() = 0;
  76. };
  77. struct monkey_fit_b :monkey_fit
  78. {
  79. static const int min_points = 60;
  80. static const int BN = 20;
  81. double k_init_;
  82. int count_;
  83. std::map<int,int> probab_b;
  84. monkey_fit_b()
  85. :k_init_(0)
  86. ,count_(0)
  87. {}
  88. monkey_fit_b(double s)
  89. :k_init_(s)
  90. ,count_(0)
  91. {}
  92. virtual void reset(double monkey_speed/*=0*/)
  93. {
  94. k_init_=monkey_speed;
  95. count_=0;
  96. probab_b.clear();
  97. }
  98. virtual void push(double time_second,double dist_meter)
  99. {
  100. double k=k_init_;
  101. ++count_;
  102. double b=(dist_meter-k*time_second)*BN;
  103. ++probab_b[round(b)];
  104. }
  105. double get_dist(double time_second)const
  106. {
  107. return k_init_*time_second + get_B();
  108. }
  109. double get_K()
  110. {
  111. return k_init_;
  112. }
  113. double get_B()const
  114. {
  115. if(count_<min_points)
  116. return 0;
  117. if(probab_b.size()<3)
  118. return 0;
  119. return 1.*get_probab_max(probab_b.begin(),probab_b.end(),count_)/BN;
  120. }
  121. };
  122. struct monkey_fit_k:monkey_fit
  123. {
  124. static const int min_points=60;
  125. static const int KN=50;
  126. int step_;
  127. uint32_t count_;
  128. std::map<int,int> probab_k;
  129. std::deque<point_2> m_points;
  130. monkey_fit_k()
  131. :step_(0)
  132. ,count_(0)
  133. {}
  134. virtual void reset(double speed /*=0*/)
  135. {
  136. probab_k.clear();
  137. m_points.clear();
  138. step_=0;
  139. count_ = 0;
  140. }
  141. virtual void push(double time_second,double dist_meter)
  142. {
  143. int cc=m_points.size();
  144. if(cc<60)
  145. {
  146. m_points.push_back(point_2(time_second,dist_meter));
  147. }
  148. else if(step_++>2)
  149. {
  150. m_points.push_back(point_2(time_second,dist_meter));
  151. step_=0;
  152. }
  153. if(cc<10)
  154. return;
  155. cc*=9./10;
  156. for(int i=0;i<3;i++)
  157. {
  158. int index=rand()%cc;
  159. double k=(dist_meter-m_points[index].y_)/(time_second-m_points[index].x_);
  160. if((1<k && k<3) || (-3<k && k<-1))
  161. {
  162. count_++;
  163. ++probab_k[round(k*KN)];
  164. }
  165. }
  166. }
  167. double get_K()
  168. {
  169. if(m_points.size()<min_points)
  170. return 0;
  171. return round(get_probab_max(probab_k.begin(),probab_k.end(),count_)/KN*10000)/10000.;
  172. }
  173. };
  174. #endif