#ifndef _LINE_HPP_ #define _LINE_HPP_ #include #include "point.h" #include "log.h" struct line { double a,b,c; line() :a(0) ,b(0) ,c(0) { } line(double k,double b_) :a(k) ,b(-1) ,c(b_) { } line(double a_,double b_,double c_) :a(a_) ,b(b_) ,c(c_) { } line(const point&p0,const point&p1) { set(p0,p1); } void clear() { a=b=c=0; } bool empty() const { return a==0 && b==0 && c==0; } void set(const point&p0,const point&p1) { auto abc=p0.get_abc(p1); a=std::get<0>(abc); b=std::get<1>(abc); c=std::get<2>(abc); } std::string to_string()const { char buf[256]; int len=sprintf(buf,"a=%.3lf,b=%.3lf,c=%.3lf",a,b,c); return std::string(buf,len); } double cos_k()const { if(b==0) return 0; double k=-a/b; return 1/sqrt(1+k*k); } double sin_k()const { if(b==0) return 1; double k=-a/b; return k/sqrt(1+k*k); } double arg()const { return acos(cos_k())*(sin_k()>0?1:-1); } static bool eq(double a,double b,double e) { return fabs(a-b) v; point angle; line_v() { v[0].set(0,0); v[1].set(0,0); } line_v(const point&p0,const point&p1) :line(p0,p1) { v[0]=p0; v[1]=p1; recalc(); } line_v widen(double length) const { point pt1(v[0].x-length*cos(),v[0].y-length*sin()); point pt2(v[1].x+length*cos(),v[1].y+length*sin()); return line_v(pt1,pt2); } void swap_point() { point tmp=v[0]; v[0]=v[1]; v[1]=tmp; recalc(); } // added by zengminguo void calc_angle() { double dx = v[1].x - v[0].x; double dy = v[1].y - v[0].y; double r = sqrt(dx*dx + dy * dy); double cos = dx / r; double sin = dy / r; angle = point(cos, sin); } //将线段转成点阵列 added by zengminguo bool calc_point_list(std::deque& queue_point) { bool bRet = true; calc_angle(); auto length = this->length(); log_info("site_length:%f", length); //从线段的起始点往后面依次加点,含头节点不含尾节点,由于线段是首尾点相连,所以这样处理 //恰好能组成一个没有重复的巷道路径集。 for (int i = 0; i < length; i++) { point p(v[0].x + angle.x*i, v[0].y + angle.y*i, 0); queue_point.push_back(p); } return bRet; } void recalc() { return; double dx = v[1].x - v[0].x; double dy = v[1].y - v[0].y; double r = sqrt(dx*dx + dy*dy); double cos = dx/r; double sin = dy/r; angle = point(cos,sin); } void set_point(int i,const point&p) { v[i]=p; recalc(); } double cos() const {return angle.x;} double sin() const {return angle.y;} point&operator[](int i) { return v[i]; } const point&operator[](int i)const { return v[i]; } std::string to_string()const { char buf[256]; int len=sprintf(buf,"[(%.3lf,%.3lf),(%.3lf,%.3lf)]",v[0].x,v[0].y,v[1].x,v[1].y); return std::string(buf,len); } point crossing(const line&l)const { point pt=line::crossing(l); return contain(pt)?pt:point(); } point crossing(const line_v&l)const { point pt=line::crossing(l); return contain(pt)&&l.contain(pt)?pt:point(); } bool is_same(const line_v&l,double e=0.0001)const { return line::contain(l[0],e) && line::contain(l[1],e); } point projection(const point&p)const { point pt=line::projection(p); return contain(pt)?pt:point(); } line_v projection(const line_v&lv)const { std::array o,t; o[0]=line::projection(lv[0]); o[1]=line::projection(lv[1]); if(o[1] v; line_r() { v[0].set(0,0); v[1].set(0,0); } line_r(const point&p0,const point&p1) :line(p0,p1) { v[0]=p0; v[1]=p1; } point&operator[](int i) { return v[i]; } const point&operator[](int i)const { return v[i]; } std::string to_string()const { char buf[256]; int len=sprintf(buf,"[(%.3lf,%.3lf),(%.3lf,%.3lf)]",v[0].x,v[0].y,v[1].x,v[1].y); return std::string(buf,len); } point crossing(const line&l)const { point pt=line::crossing(l); return contain(pt)?pt:point(); } point crossing(const line_r&l)const { point pt=line::crossing(l); return contain(pt)&&l.contain(pt)?pt:point(); } point projection(const point&p)const { point pt=line::projection(p); return contain(pt)?pt:point(); } bool invalid()const { return v[0].dist(v[1])<0.01; } bool contain(const point&p,double e=0.0001)const { return contain(p.x,p.y,e); } bool is_same_direction(const line_r &lr) { bool f=false; if(v[0]==lr[0]){ if(contain(lr[1])) f=true; } else{ f=(contain(lr[0]) && contain(lr[1]) && !lr.contain(v[0]))|| (lr.contain(v[0]) && lr.contain(v[1]) && !contain(lr[0])); } return f; } bool contain(double x,double y,double e=0.0001)const { return line::contain(x,y,e)?in_contain(x,y,e)||out_contain(x,y,e):false; } bool in_contain(const point &p,double e=0.0001) { return in_contain(p.x,p.y,e); } bool in_contain(double x,double y,double e=0.0001)const { return line::contain(x,y,e)?eq(v[0].dist(v[1]),v[0].dist(x,y)+v[1].dist(x,y),e):false; } bool out_contain(double x,double y,double e=0.0001)const { return line::contain(x,y,e)?(v[0].dist(x,y)>=v[1].dist(x,y)):false; } double dist(const point&v)const { point p=projection(v); if(p.empty()) return -1; return v.dist(p); } const line &as_line()const { return *this; } }; #endif