KalmanFilter.cpp 1.7 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495
  1. #ifndef KALMAN_FILTER_CPP
  2. #define KALMAN_FILTER_CPP
  3. #include "KalmanFilter.h"
  4. CKalmanFilter::CKalmanFilter()
  5. {
  6. m_pCar = NULL;
  7. if(m_pCar == NULL){
  8. m_pCar = new Car;
  9. }
  10. m_bFlag = false;
  11. m_nCounts = 0;
  12. }
  13. CKalmanFilter::~CKalmanFilter()
  14. {
  15. if(m_pCar){
  16. delete m_pCar;
  17. m_pCar = NULL;
  18. }
  19. }
  20. /*
  21. * 函数名:Initial
  22. * 卡尔曼初始化条件
  23. *
  24. * param:
  25. * car
  26. * t
  27. *
  28. * return:
  29. * 无
  30. *
  31. */
  32. void CKalmanFilter::Initial(double t)
  33. {
  34. //t = 0.5;
  35. m_pCar->A.setIdentity(READER_NUMS, READER_NUMS);
  36. m_pCar->A(0, 1) = t;
  37. m_pCar->A(2, 3) = t;
  38. m_pCar->x.setZero(READER_NUMS, 1);
  39. m_pCar->P.setZero(READER_NUMS, READER_NUMS);
  40. m_pCar->P(0, 0) = 8000; //8000
  41. m_pCar->P(1, 1) = 10;
  42. m_pCar->P(2, 2) = 8000; //8000
  43. m_pCar->P(3, 3) = 10;
  44. m_pCar->Q.setZero(READER_NUMS, READER_NUMS);
  45. m_pCar->Q(0, 0) = 2.5;
  46. m_pCar->Q(1, 1) = 0.1;
  47. m_pCar->Q(2, 2) = 2.5;
  48. m_pCar->Q(3, 3) = 0.1;
  49. m_pCar->H.setIdentity(OBSERVATION_NUMS, OBSERVATION_NUMS);
  50. m_pCar->z.setZero(OBSERVATION_NUMS, 1);
  51. m_pCar->R.setIdentity(OBSERVATION_NUMS, OBSERVATION_NUMS);
  52. m_pCar->t = 0;
  53. }
  54. /*
  55. * 函数功能:没有定位成功时调用
  56. *
  57. * param
  58. * t 间隔时间
  59. *
  60. * return
  61. * 无
  62. */
  63. void CKalmanFilter::Predict(double t)
  64. {
  65. //t = 0.5;
  66. //predict
  67. m_pCar->A(0,1) = t;
  68. m_pCar->A(2,3) = t;
  69. m_pCar->x = m_pCar->A * m_pCar->x;
  70. m_pCar->P = m_pCar->A * m_pCar->P *(m_pCar->A).adjoint() + m_pCar->Q;
  71. }
  72. /*
  73. * 定位成功调用
  74. */
  75. void CKalmanFilter::Predict_Correct(double t)
  76. {
  77. //t = 0.5;
  78. //predict
  79. Predict(t);
  80. //correct
  81. Eigen::MatrixXd K = m_pCar->P * m_pCar->H.adjoint() * (m_pCar->H * m_pCar->P *m_pCar->H.adjoint() + m_pCar->R).inverse();
  82. m_pCar->x = m_pCar->x + K * (m_pCar->z - m_pCar->H * m_pCar->x);
  83. m_pCar->P = m_pCar->P - K * m_pCar->H * m_pCar->P;
  84. }
  85. #endif