import { Vector3, Vector4 } from 'three'; /** * NURBS utils * * See NURBSCurve and NURBSSurface. **/ /************************************************************** * NURBS Utils **************************************************************/ /* Finds knot vector span. p : degree u : parametric value U : knot vector returns the span */ function findSpan( p, u, U ) { const n = U.length - p - 1; if ( u >= U[ n ] ) { return n - 1; } if ( u <= U[ p ] ) { return p; } let low = p; let high = n; let mid = Math.floor( ( low + high ) / 2 ); while ( u < U[ mid ] || u >= U[ mid + 1 ] ) { if ( u < U[ mid ] ) { high = mid; } else { low = mid; } mid = Math.floor( ( low + high ) / 2 ); } return mid; } /* Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2 span : span in which u lies u : parametric point p : degree U : knot vector returns array[p+1] with basis functions values. */ function calcBasisFunctions( span, u, p, U ) { const N = []; const left = []; const right = []; N[ 0 ] = 1.0; for ( let j = 1; j <= p; ++ j ) { left[ j ] = u - U[ span + 1 - j ]; right[ j ] = U[ span + j ] - u; let saved = 0.0; for ( let r = 0; r < j; ++ r ) { const rv = right[ r + 1 ]; const lv = left[ j - r ]; const temp = N[ r ] / ( rv + lv ); N[ r ] = saved + rv * temp; saved = lv * temp; } N[ j ] = saved; } return N; } /* Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1. p : degree of B-Spline U : knot vector P : control points (x, y, z, w) u : parametric point returns point for given u */ function calcBSplinePoint( p, U, P, u ) { const span = findSpan( p, u, U ); const N = calcBasisFunctions( span, u, p, U ); const C = new Vector4( 0, 0, 0, 0 ); for ( let j = 0; j <= p; ++ j ) { const point = P[ span - p + j ]; const Nj = N[ j ]; const wNj = point.w * Nj; C.x += point.x * wNj; C.y += point.y * wNj; C.z += point.z * wNj; C.w += point.w * Nj; } return C; } /* Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3. span : span in which u lies u : parametric point p : degree n : number of derivatives to calculate U : knot vector returns array[n+1][p+1] with basis functions derivatives */ function calcBasisFunctionDerivatives( span, u, p, n, U ) { const zeroArr = []; for ( let i = 0; i <= p; ++ i ) zeroArr[ i ] = 0.0; const ders = []; for ( let i = 0; i <= n; ++ i ) ders[ i ] = zeroArr.slice( 0 ); const ndu = []; for ( let i = 0; i <= p; ++ i ) ndu[ i ] = zeroArr.slice( 0 ); ndu[ 0 ][ 0 ] = 1.0; const left = zeroArr.slice( 0 ); const right = zeroArr.slice( 0 ); for ( let j = 1; j <= p; ++ j ) { left[ j ] = u - U[ span + 1 - j ]; right[ j ] = U[ span + j ] - u; let saved = 0.0; for ( let r = 0; r < j; ++ r ) { const rv = right[ r + 1 ]; const lv = left[ j - r ]; ndu[ j ][ r ] = rv + lv; const temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ]; ndu[ r ][ j ] = saved + rv * temp; saved = lv * temp; } ndu[ j ][ j ] = saved; } for ( let j = 0; j <= p; ++ j ) { ders[ 0 ][ j ] = ndu[ j ][ p ]; } for ( let r = 0; r <= p; ++ r ) { let s1 = 0; let s2 = 1; const a = []; for ( let i = 0; i <= p; ++ i ) { a[ i ] = zeroArr.slice( 0 ); } a[ 0 ][ 0 ] = 1.0; for ( let k = 1; k <= n; ++ k ) { let d = 0.0; const rk = r - k; const pk = p - k; if ( r >= k ) { a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ]; d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ]; } const j1 = ( rk >= - 1 ) ? 1 : - rk; const j2 = ( r - 1 <= pk ) ? k - 1 : p - r; for ( let j = j1; j <= j2; ++ j ) { a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ]; d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ]; } if ( r <= pk ) { a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ]; d += a[ s2 ][ k ] * ndu[ r ][ pk ]; } ders[ k ][ r ] = d; const j = s1; s1 = s2; s2 = j; } } let r = p; for ( let k = 1; k <= n; ++ k ) { for ( let j = 0; j <= p; ++ j ) { ders[ k ][ j ] *= r; } r *= p - k; } return ders; } /* Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2. p : degree U : knot vector P : control points u : Parametric points nd : number of derivatives returns array[d+1] with derivatives */ function calcBSplineDerivatives( p, U, P, u, nd ) { const du = nd < p ? nd : p; const CK = []; const span = findSpan( p, u, U ); const nders = calcBasisFunctionDerivatives( span, u, p, du, U ); const Pw = []; for ( let i = 0; i < P.length; ++ i ) { const point = P[ i ].clone(); const w = point.w; point.x *= w; point.y *= w; point.z *= w; Pw[ i ] = point; } for ( let k = 0; k <= du; ++ k ) { const point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] ); for ( let j = 1; j <= p; ++ j ) { point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) ); } CK[ k ] = point; } for ( let k = du + 1; k <= nd + 1; ++ k ) { CK[ k ] = new Vector4( 0, 0, 0 ); } return CK; } /* Calculate "K over I" returns k!/(i!(k-i)!) */ function calcKoverI( k, i ) { let nom = 1; for ( let j = 2; j <= k; ++ j ) { nom *= j; } let denom = 1; for ( let j = 2; j <= i; ++ j ) { denom *= j; } for ( let j = 2; j <= k - i; ++ j ) { denom *= j; } return nom / denom; } /* Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2. Pders : result of function calcBSplineDerivatives returns array with derivatives for rational curve. */ function calcRationalCurveDerivatives( Pders ) { const nd = Pders.length; const Aders = []; const wders = []; for ( let i = 0; i < nd; ++ i ) { const point = Pders[ i ]; Aders[ i ] = new Vector3( point.x, point.y, point.z ); wders[ i ] = point.w; } const CK = []; for ( let k = 0; k < nd; ++ k ) { const v = Aders[ k ].clone(); for ( let i = 1; i <= k; ++ i ) { v.sub( CK[ k - i ].clone().multiplyScalar( calcKoverI( k, i ) * wders[ i ] ) ); } CK[ k ] = v.divideScalar( wders[ 0 ] ); } return CK; } /* Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2. p : degree U : knot vector P : control points in homogeneous space u : parametric points nd : number of derivatives returns array with derivatives. */ function calcNURBSDerivatives( p, U, P, u, nd ) { const Pders = calcBSplineDerivatives( p, U, P, u, nd ); return calcRationalCurveDerivatives( Pders ); } /* Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3. p1, p2 : degrees of B-Spline surface U1, U2 : knot vectors P : control points (x, y, z, w) u, v : parametric values returns point for given (u, v) */ function calcSurfacePoint( p, q, U, V, P, u, v, target ) { const uspan = findSpan( p, u, U ); const vspan = findSpan( q, v, V ); const Nu = calcBasisFunctions( uspan, u, p, U ); const Nv = calcBasisFunctions( vspan, v, q, V ); const temp = []; for ( let l = 0; l <= q; ++ l ) { temp[ l ] = new Vector4( 0, 0, 0, 0 ); for ( let k = 0; k <= p; ++ k ) { const point = P[ uspan - p + k ][ vspan - q + l ].clone(); const w = point.w; point.x *= w; point.y *= w; point.z *= w; temp[ l ].add( point.multiplyScalar( Nu[ k ] ) ); } } const Sw = new Vector4( 0, 0, 0, 0 ); for ( let l = 0; l <= q; ++ l ) { Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) ); } Sw.divideScalar( Sw.w ); target.set( Sw.x, Sw.y, Sw.z ); } export { findSpan, calcBasisFunctions, calcBSplinePoint, calcBasisFunctionDerivatives, calcBSplineDerivatives, calcKoverI, calcRationalCurveDerivatives, calcNURBSDerivatives, calcSurfacePoint, };