123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487 |
- import {
- Vector3,
- Vector4
- } from 'three';
- /**
- * NURBS utils
- *
- * See NURBSCurve and NURBSSurface.
- **/
- /**************************************************************
- * NURBS Utils
- **************************************************************/
- /*
- Finds knot vector span.
- p : degree
- u : parametric value
- U : knot vector
- returns the span
- */
- function findSpan( p, u, U ) {
- const n = U.length - p - 1;
- if ( u >= U[ n ] ) {
- return n - 1;
- }
- if ( u <= U[ p ] ) {
- return p;
- }
- let low = p;
- let high = n;
- let mid = Math.floor( ( low + high ) / 2 );
- while ( u < U[ mid ] || u >= U[ mid + 1 ] ) {
- if ( u < U[ mid ] ) {
- high = mid;
- } else {
- low = mid;
- }
- mid = Math.floor( ( low + high ) / 2 );
- }
- return mid;
- }
- /*
- Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2
- span : span in which u lies
- u : parametric point
- p : degree
- U : knot vector
- returns array[p+1] with basis functions values.
- */
- function calcBasisFunctions( span, u, p, U ) {
- const N = [];
- const left = [];
- const right = [];
- N[ 0 ] = 1.0;
- for ( let j = 1; j <= p; ++ j ) {
- left[ j ] = u - U[ span + 1 - j ];
- right[ j ] = U[ span + j ] - u;
- let saved = 0.0;
- for ( let r = 0; r < j; ++ r ) {
- const rv = right[ r + 1 ];
- const lv = left[ j - r ];
- const temp = N[ r ] / ( rv + lv );
- N[ r ] = saved + rv * temp;
- saved = lv * temp;
- }
- N[ j ] = saved;
- }
- return N;
- }
- /*
- Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
- p : degree of B-Spline
- U : knot vector
- P : control points (x, y, z, w)
- u : parametric point
- returns point for given u
- */
- function calcBSplinePoint( p, U, P, u ) {
- const span = findSpan( p, u, U );
- const N = calcBasisFunctions( span, u, p, U );
- const C = new Vector4( 0, 0, 0, 0 );
- for ( let j = 0; j <= p; ++ j ) {
- const point = P[ span - p + j ];
- const Nj = N[ j ];
- const wNj = point.w * Nj;
- C.x += point.x * wNj;
- C.y += point.y * wNj;
- C.z += point.z * wNj;
- C.w += point.w * Nj;
- }
- return C;
- }
- /*
- Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
- span : span in which u lies
- u : parametric point
- p : degree
- n : number of derivatives to calculate
- U : knot vector
- returns array[n+1][p+1] with basis functions derivatives
- */
- function calcBasisFunctionDerivatives( span, u, p, n, U ) {
- const zeroArr = [];
- for ( let i = 0; i <= p; ++ i )
- zeroArr[ i ] = 0.0;
- const ders = [];
- for ( let i = 0; i <= n; ++ i )
- ders[ i ] = zeroArr.slice( 0 );
- const ndu = [];
- for ( let i = 0; i <= p; ++ i )
- ndu[ i ] = zeroArr.slice( 0 );
- ndu[ 0 ][ 0 ] = 1.0;
- const left = zeroArr.slice( 0 );
- const right = zeroArr.slice( 0 );
- for ( let j = 1; j <= p; ++ j ) {
- left[ j ] = u - U[ span + 1 - j ];
- right[ j ] = U[ span + j ] - u;
- let saved = 0.0;
- for ( let r = 0; r < j; ++ r ) {
- const rv = right[ r + 1 ];
- const lv = left[ j - r ];
- ndu[ j ][ r ] = rv + lv;
- const temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ];
- ndu[ r ][ j ] = saved + rv * temp;
- saved = lv * temp;
- }
- ndu[ j ][ j ] = saved;
- }
- for ( let j = 0; j <= p; ++ j ) {
- ders[ 0 ][ j ] = ndu[ j ][ p ];
- }
- for ( let r = 0; r <= p; ++ r ) {
- let s1 = 0;
- let s2 = 1;
- const a = [];
- for ( let i = 0; i <= p; ++ i ) {
- a[ i ] = zeroArr.slice( 0 );
- }
- a[ 0 ][ 0 ] = 1.0;
- for ( let k = 1; k <= n; ++ k ) {
- let d = 0.0;
- const rk = r - k;
- const pk = p - k;
- if ( r >= k ) {
- a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ];
- d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ];
- }
- const j1 = ( rk >= - 1 ) ? 1 : - rk;
- const j2 = ( r - 1 <= pk ) ? k - 1 : p - r;
- for ( let j = j1; j <= j2; ++ j ) {
- a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ];
- d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ];
- }
- if ( r <= pk ) {
- a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ];
- d += a[ s2 ][ k ] * ndu[ r ][ pk ];
- }
- ders[ k ][ r ] = d;
- const j = s1;
- s1 = s2;
- s2 = j;
- }
- }
- let r = p;
- for ( let k = 1; k <= n; ++ k ) {
- for ( let j = 0; j <= p; ++ j ) {
- ders[ k ][ j ] *= r;
- }
- r *= p - k;
- }
- return ders;
- }
- /*
- Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
- p : degree
- U : knot vector
- P : control points
- u : Parametric points
- nd : number of derivatives
- returns array[d+1] with derivatives
- */
- function calcBSplineDerivatives( p, U, P, u, nd ) {
- const du = nd < p ? nd : p;
- const CK = [];
- const span = findSpan( p, u, U );
- const nders = calcBasisFunctionDerivatives( span, u, p, du, U );
- const Pw = [];
- for ( let i = 0; i < P.length; ++ i ) {
- const point = P[ i ].clone();
- const w = point.w;
- point.x *= w;
- point.y *= w;
- point.z *= w;
- Pw[ i ] = point;
- }
- for ( let k = 0; k <= du; ++ k ) {
- const point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] );
- for ( let j = 1; j <= p; ++ j ) {
- point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) );
- }
- CK[ k ] = point;
- }
- for ( let k = du + 1; k <= nd + 1; ++ k ) {
- CK[ k ] = new Vector4( 0, 0, 0 );
- }
- return CK;
- }
- /*
- Calculate "K over I"
- returns k!/(i!(k-i)!)
- */
- function calcKoverI( k, i ) {
- let nom = 1;
- for ( let j = 2; j <= k; ++ j ) {
- nom *= j;
- }
- let denom = 1;
- for ( let j = 2; j <= i; ++ j ) {
- denom *= j;
- }
- for ( let j = 2; j <= k - i; ++ j ) {
- denom *= j;
- }
- return nom / denom;
- }
- /*
- Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
- Pders : result of function calcBSplineDerivatives
- returns array with derivatives for rational curve.
- */
- function calcRationalCurveDerivatives( Pders ) {
- const nd = Pders.length;
- const Aders = [];
- const wders = [];
- for ( let i = 0; i < nd; ++ i ) {
- const point = Pders[ i ];
- Aders[ i ] = new Vector3( point.x, point.y, point.z );
- wders[ i ] = point.w;
- }
- const CK = [];
- for ( let k = 0; k < nd; ++ k ) {
- const v = Aders[ k ].clone();
- for ( let i = 1; i <= k; ++ i ) {
- v.sub( CK[ k - i ].clone().multiplyScalar( calcKoverI( k, i ) * wders[ i ] ) );
- }
- CK[ k ] = v.divideScalar( wders[ 0 ] );
- }
- return CK;
- }
- /*
- Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
- p : degree
- U : knot vector
- P : control points in homogeneous space
- u : parametric points
- nd : number of derivatives
- returns array with derivatives.
- */
- function calcNURBSDerivatives( p, U, P, u, nd ) {
- const Pders = calcBSplineDerivatives( p, U, P, u, nd );
- return calcRationalCurveDerivatives( Pders );
- }
- /*
- Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.
- p1, p2 : degrees of B-Spline surface
- U1, U2 : knot vectors
- P : control points (x, y, z, w)
- u, v : parametric values
- returns point for given (u, v)
- */
- function calcSurfacePoint( p, q, U, V, P, u, v, target ) {
- const uspan = findSpan( p, u, U );
- const vspan = findSpan( q, v, V );
- const Nu = calcBasisFunctions( uspan, u, p, U );
- const Nv = calcBasisFunctions( vspan, v, q, V );
- const temp = [];
- for ( let l = 0; l <= q; ++ l ) {
- temp[ l ] = new Vector4( 0, 0, 0, 0 );
- for ( let k = 0; k <= p; ++ k ) {
- const point = P[ uspan - p + k ][ vspan - q + l ].clone();
- const w = point.w;
- point.x *= w;
- point.y *= w;
- point.z *= w;
- temp[ l ].add( point.multiplyScalar( Nu[ k ] ) );
- }
- }
- const Sw = new Vector4( 0, 0, 0, 0 );
- for ( let l = 0; l <= q; ++ l ) {
- Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) );
- }
- Sw.divideScalar( Sw.w );
- target.set( Sw.x, Sw.y, Sw.z );
- }
- export {
- findSpan,
- calcBasisFunctions,
- calcBSplinePoint,
- calcBasisFunctionDerivatives,
- calcBSplineDerivatives,
- calcKoverI,
- calcRationalCurveDerivatives,
- calcNURBSDerivatives,
- calcSurfacePoint,
- };
|