/** * @author Almar Klein / http://almarklein.org * * Shaders to render 3D volumes using raycasting. * The applied techniques are based on similar implementations in the Visvis and Vispy projects. * This is not the only approach, therefore it's marked 1. */ THREE.VolumeRenderShader1 = { uniforms: { "u_size": { value: new THREE.Vector3( 1, 1, 1 ) }, "u_renderstyle": { value: 0 }, "u_renderthreshold": { value: 0.5 }, "u_clim": { value: new THREE.Vector2( 1, 1 ) }, "u_data": { value: null }, "u_cmdata": { value: null } }, vertexShader: [ 'varying vec4 v_nearpos;', 'varying vec4 v_farpos;', 'varying vec3 v_position;', 'mat4 inversemat(mat4 m) {', // Taken from https://github.com/stackgl/glsl-inverse/blob/master/index.glsl // This function is licenced by the MIT license to Mikola Lysenko 'float', 'a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3],', 'a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3],', 'a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3],', 'a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3],', 'b00 = a00 * a11 - a01 * a10,', 'b01 = a00 * a12 - a02 * a10,', 'b02 = a00 * a13 - a03 * a10,', 'b03 = a01 * a12 - a02 * a11,', 'b04 = a01 * a13 - a03 * a11,', 'b05 = a02 * a13 - a03 * a12,', 'b06 = a20 * a31 - a21 * a30,', 'b07 = a20 * a32 - a22 * a30,', 'b08 = a20 * a33 - a23 * a30,', 'b09 = a21 * a32 - a22 * a31,', 'b10 = a21 * a33 - a23 * a31,', 'b11 = a22 * a33 - a23 * a32,', 'det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;', 'return mat4(', 'a11 * b11 - a12 * b10 + a13 * b09,', 'a02 * b10 - a01 * b11 - a03 * b09,', 'a31 * b05 - a32 * b04 + a33 * b03,', 'a22 * b04 - a21 * b05 - a23 * b03,', 'a12 * b08 - a10 * b11 - a13 * b07,', 'a00 * b11 - a02 * b08 + a03 * b07,', 'a32 * b02 - a30 * b05 - a33 * b01,', 'a20 * b05 - a22 * b02 + a23 * b01,', 'a10 * b10 - a11 * b08 + a13 * b06,', 'a01 * b08 - a00 * b10 - a03 * b06,', 'a30 * b04 - a31 * b02 + a33 * b00,', 'a21 * b02 - a20 * b04 - a23 * b00,', 'a11 * b07 - a10 * b09 - a12 * b06,', 'a00 * b09 - a01 * b07 + a02 * b06,', 'a31 * b01 - a30 * b03 - a32 * b00,', 'a20 * b03 - a21 * b01 + a22 * b00) / det;', '}', 'void main() {', // Prepare transforms to map to "camera view". See also: // https://threejs.org/docs/#api/renderers/webgl/WebGLProgram 'mat4 viewtransformf = viewMatrix;', 'mat4 viewtransformi = inversemat(viewMatrix);', // Project local vertex coordinate to camera position. Then do a step // backward (in cam coords) to the near clipping plane, and project back. Do // the same for the far clipping plane. This gives us all the information we // need to calculate the ray and truncate it to the viewing cone. 'vec4 position4 = vec4(position, 1.0);', 'vec4 pos_in_cam = viewtransformf * position4;', // Intersection of ray and near clipping plane (z = -1 in clip coords) 'pos_in_cam.z = -pos_in_cam.w;', 'v_nearpos = viewtransformi * pos_in_cam;', // Intersection of ray and far clipping plane (z = +1 in clip coords) 'pos_in_cam.z = pos_in_cam.w;', 'v_farpos = viewtransformi * pos_in_cam;', // Set varyings and output pos 'v_position = position;', 'gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;', '}', ].join( '\n' ), fragmentShader: [ 'precision highp float;', 'precision mediump sampler3D;', 'uniform vec3 u_size;', 'uniform int u_renderstyle;', 'uniform float u_renderthreshold;', 'uniform vec2 u_clim;', 'uniform sampler3D u_data;', 'uniform sampler2D u_cmdata;', 'varying vec3 v_position;', 'varying vec4 v_nearpos;', 'varying vec4 v_farpos;', // The maximum distance through our rendering volume is sqrt(3). 'const int MAX_STEPS = 887; // 887 for 512^3, 1774 for 1024^3', 'const int REFINEMENT_STEPS = 4;', 'const float relative_step_size = 1.0;', 'const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);', 'const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);', 'const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);', 'const float shininess = 40.0;', 'void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);', 'void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);', 'float sample1(vec3 texcoords);', 'vec4 apply_colormap(float val);', 'vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);', 'void main() {', // Normalize clipping plane info 'vec3 farpos = v_farpos.xyz / v_farpos.w;', 'vec3 nearpos = v_nearpos.xyz / v_nearpos.w;', // Calculate unit vector pointing in the view direction through this fragment. 'vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);', // Compute the (negative) distance to the front surface or near clipping plane. // v_position is the back face of the cuboid, so the initial distance calculated in the dot // product below is the distance from near clip plane to the back of the cuboid 'float distance = dot(nearpos - v_position, view_ray);', 'distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,', '(u_size.x - 0.5 - v_position.x) / view_ray.x));', 'distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,', '(u_size.y - 0.5 - v_position.y) / view_ray.y));', 'distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,', '(u_size.z - 0.5 - v_position.z) / view_ray.z));', // Now we have the starting position on the front surface 'vec3 front = v_position + view_ray * distance;', // Decide how many steps to take 'int nsteps = int(-distance / relative_step_size + 0.5);', 'if ( nsteps < 1 )', 'discard;', // Get starting location and step vector in texture coordinates 'vec3 step = ((v_position - front) / u_size) / float(nsteps);', 'vec3 start_loc = front / u_size;', // For testing: show the number of steps. This helps to establish // whether the rays are correctly oriented //'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);', //'return;', 'if (u_renderstyle == 0)', 'cast_mip(start_loc, step, nsteps, view_ray);', 'else if (u_renderstyle == 1)', 'cast_iso(start_loc, step, nsteps, view_ray);', 'if (gl_FragColor.a < 0.05)', 'discard;', '}', 'float sample1(vec3 texcoords) {', '/* Sample float value from a 3D texture. Assumes intensity data. */', 'return texture(u_data, texcoords.xyz).r;', '}', 'vec4 apply_colormap(float val) {', 'val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);', 'return texture2D(u_cmdata, vec2(val, 0.5));', '}', 'void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {', 'float max_val = -1e6;', 'int max_i = 100;', 'vec3 loc = start_loc;', // Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with // non-constant expression. So we use a hard-coded max, and an additional condition // inside the loop. 'for (int iter=0; iter= nsteps)', 'break;', // Sample from the 3D texture 'float val = sample1(loc);', // Apply MIP operation 'if (val > max_val) {', 'max_val = val;', 'max_i = iter;', '}', // Advance location deeper into the volume 'loc += step;', '}', // Refine location, gives crispier images 'vec3 iloc = start_loc + step * (float(max_i) - 0.5);', 'vec3 istep = step / float(REFINEMENT_STEPS);', 'for (int i=0; i= nsteps)', 'break;', // Sample from the 3D texture 'float val = sample1(loc);', 'if (val > low_threshold) {', // Take the last interval in smaller steps 'vec3 iloc = loc - 0.5 * step;', 'vec3 istep = step / float(REFINEMENT_STEPS);', 'for (int i=0; i u_renderthreshold) {', 'gl_FragColor = add_lighting(val, iloc, dstep, view_ray);', 'return;', '}', 'iloc += istep;', '}', '}', // Advance location deeper into the volume 'loc += step;', '}', '}', 'vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)', '{', // Calculate color by incorporating lighting // View direction 'vec3 V = normalize(view_ray);', // calculate normal vector from gradient 'vec3 N;', 'float val1, val2;', 'val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));', 'val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));', 'N[0] = val1 - val2;', 'val = max(max(val1, val2), val);', 'val1 = sample1(loc + vec3(0.0, -step[1], 0.0));', 'val2 = sample1(loc + vec3(0.0, +step[1], 0.0));', 'N[1] = val1 - val2;', 'val = max(max(val1, val2), val);', 'val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));', 'val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));', 'N[2] = val1 - val2;', 'val = max(max(val1, val2), val);', 'float gm = length(N); // gradient magnitude', 'N = normalize(N);', // Flip normal so it points towards viewer 'float Nselect = float(dot(N, V) > 0.0);', 'N = (2.0 * Nselect - 1.0) * N; // == Nselect * N - (1.0-Nselect)*N;', // Init colors 'vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);', 'vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);', 'vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);', // note: could allow multiple lights 'for (int i=0; i<1; i++)', '{', // Get light direction (make sure to prevent zero devision) 'vec3 L = normalize(view_ray); //lightDirs[i];', 'float lightEnabled = float( length(L) > 0.0 );', 'L = normalize(L + (1.0 - lightEnabled));', // Calculate lighting properties 'float lambertTerm = clamp(dot(N, L), 0.0, 1.0);', 'vec3 H = normalize(L+V); // Halfway vector', 'float specularTerm = pow(max(dot(H, N), 0.0), shininess);', // Calculate mask 'float mask1 = lightEnabled;', // Calculate colors 'ambient_color += mask1 * ambient_color; // * gl_LightSource[i].ambient;', 'diffuse_color += mask1 * lambertTerm;', 'specular_color += mask1 * specularTerm * specular_color;', '}', // Calculate final color by componing different components 'vec4 final_color;', 'vec4 color = apply_colormap(val);', 'final_color = color * (ambient_color + diffuse_color) + specular_color;', 'final_color.a = color.a;', 'return final_color;', '}', ].join( '\n' ) };