EXRLoader.js 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184
  1. /**
  2. * @author Richard M. / https://github.com/richardmonette
  3. *
  4. * OpenEXR loader which, currently, supports reading 16 bit half data, in either
  5. * uncompressed or PIZ wavelet compressed form.
  6. *
  7. * Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita
  8. * implementation, so I have preserved their copyright notices.
  9. */
  10. // /*
  11. // Copyright (c) 2014 - 2017, Syoyo Fujita
  12. // All rights reserved.
  13. // Redistribution and use in source and binary forms, with or without
  14. // modification, are permitted provided that the following conditions are met:
  15. // * Redistributions of source code must retain the above copyright
  16. // notice, this list of conditions and the following disclaimer.
  17. // * Redistributions in binary form must reproduce the above copyright
  18. // notice, this list of conditions and the following disclaimer in the
  19. // documentation and/or other materials provided with the distribution.
  20. // * Neither the name of the Syoyo Fujita nor the
  21. // names of its contributors may be used to endorse or promote products
  22. // derived from this software without specific prior written permission.
  23. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  24. // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  25. // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  26. // DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
  27. // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  28. // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  29. // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  30. // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  31. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  32. // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  33. // */
  34. // // TinyEXR contains some OpenEXR code, which is licensed under ------------
  35. // ///////////////////////////////////////////////////////////////////////////
  36. // //
  37. // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
  38. // // Digital Ltd. LLC
  39. // //
  40. // // All rights reserved.
  41. // //
  42. // // Redistribution and use in source and binary forms, with or without
  43. // // modification, are permitted provided that the following conditions are
  44. // // met:
  45. // // * Redistributions of source code must retain the above copyright
  46. // // notice, this list of conditions and the following disclaimer.
  47. // // * Redistributions in binary form must reproduce the above
  48. // // copyright notice, this list of conditions and the following disclaimer
  49. // // in the documentation and/or other materials provided with the
  50. // // distribution.
  51. // // * Neither the name of Industrial Light & Magic nor the names of
  52. // // its contributors may be used to endorse or promote products derived
  53. // // from this software without specific prior written permission.
  54. // //
  55. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  56. // // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  57. // // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  58. // // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  59. // // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  60. // // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  61. // // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  62. // // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  63. // // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  64. // // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  65. // // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  66. // //
  67. // ///////////////////////////////////////////////////////////////////////////
  68. // // End of OpenEXR license -------------------------------------------------
  69. THREE.EXRLoader = function ( manager ) {
  70. this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
  71. };
  72. THREE.EXRLoader.prototype = Object.create( THREE.DataTextureLoader.prototype );
  73. THREE.EXRLoader.prototype._parser = function ( buffer ) {
  74. const USHORT_RANGE = (1 << 16);
  75. const BITMAP_SIZE = (USHORT_RANGE >> 3);
  76. const HUF_ENCBITS = 16; // literal (value) bit length
  77. const HUF_DECBITS = 14; // decoding bit size (>= 8)
  78. const HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1; // encoding table size
  79. const HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
  80. const HUF_DECMASK = HUF_DECSIZE - 1;
  81. const SHORT_ZEROCODE_RUN = 59;
  82. const LONG_ZEROCODE_RUN = 63;
  83. const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
  84. const LONGEST_LONG_RUN = 255 + SHORTEST_LONG_RUN;
  85. const BYTES_PER_HALF = 2;
  86. const ULONG_SIZE = 8;
  87. const FLOAT32_SIZE = 4;
  88. const INT32_SIZE = 4;
  89. const INT16_SIZE = 2;
  90. const INT8_SIZE = 1;
  91. function reverseLutFromBitmap( bitmap, lut ) {
  92. var k = 0;
  93. for ( var i = 0; i < USHORT_RANGE; ++ i ) {
  94. if ( ( i == 0 ) || ( bitmap[ i >> 3 ] & ( 1 << ( i & 7 ) ) ) ) {
  95. lut[ k ++ ] = i;
  96. }
  97. }
  98. var n = k - 1;
  99. while ( k < USHORT_RANGE ) lut[ k ++ ] = 0;
  100. return n;
  101. }
  102. function hufClearDecTable( hdec ) {
  103. for ( var i = 0; i < HUF_DECSIZE; i ++ ) {
  104. hdec[ i ] = {};
  105. hdec[ i ].len = 0;
  106. hdec[ i ].lit = 0;
  107. hdec[ i ].p = null;
  108. }
  109. }
  110. const getBitsReturn = { l: 0, c: 0, lc: 0 };
  111. function getBits( nBits, c, lc, uInt8Array, inOffset ) {
  112. while ( lc < nBits ) {
  113. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  114. lc += 8;
  115. }
  116. lc -= nBits;
  117. getBitsReturn.l = ( c >> lc ) & ( ( 1 << nBits ) - 1 );
  118. getBitsReturn.c = c;
  119. getBitsReturn.lc = lc;
  120. }
  121. const hufTableBuffer = new Array( 59 );
  122. function hufCanonicalCodeTable( hcode ) {
  123. for ( var i = 0; i <= 58; ++ i ) hufTableBuffer[ i ] = 0;
  124. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) hufTableBuffer[ hcode[ i ] ] += 1;
  125. var c = 0;
  126. for ( var i = 58; i > 0; -- i ) {
  127. var nc = ( ( c + hufTableBuffer[ i ] ) >> 1 );
  128. hufTableBuffer[ i ] = c;
  129. c = nc;
  130. }
  131. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) {
  132. var l = hcode[ i ];
  133. if ( l > 0 ) hcode[ i ] = l | ( hufTableBuffer[ l ] ++ << 6 );
  134. }
  135. }
  136. function hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, hcode ) {
  137. var p = inOffset;
  138. var c = 0;
  139. var lc = 0;
  140. for ( ; im <= iM; im ++ ) {
  141. if ( p.value - inOffset.value > ni ) return false;
  142. getBits( 6, c, lc, uInt8Array, p );
  143. var l = getBitsReturn.l;
  144. c = getBitsReturn.c;
  145. lc = getBitsReturn.lc;
  146. hcode[ im ] = l;
  147. if ( l == LONG_ZEROCODE_RUN ) {
  148. if ( p.value - inOffset.value > ni ) {
  149. throw 'Something wrong with hufUnpackEncTable';
  150. }
  151. getBits( 8, c, lc, uInt8Array, p );
  152. var zerun = getBitsReturn.l + SHORTEST_LONG_RUN;
  153. c = getBitsReturn.c;
  154. lc = getBitsReturn.lc;
  155. if ( im + zerun > iM + 1 ) {
  156. throw 'Something wrong with hufUnpackEncTable';
  157. }
  158. while ( zerun -- ) hcode[ im ++ ] = 0;
  159. im --;
  160. } else if ( l >= SHORT_ZEROCODE_RUN ) {
  161. var zerun = l - SHORT_ZEROCODE_RUN + 2;
  162. if ( im + zerun > iM + 1 ) {
  163. throw 'Something wrong with hufUnpackEncTable';
  164. }
  165. while ( zerun -- ) hcode[ im ++ ] = 0;
  166. im --;
  167. }
  168. }
  169. hufCanonicalCodeTable( hcode );
  170. }
  171. function hufLength( code ) { return code & 63; }
  172. function hufCode( code ) { return code >> 6; }
  173. function hufBuildDecTable( hcode, im, iM, hdecod ) {
  174. for ( ; im <= iM; im ++ ) {
  175. var c = hufCode( hcode[ im ] );
  176. var l = hufLength( hcode[ im ] );
  177. if ( c >> l ) {
  178. throw 'Invalid table entry';
  179. }
  180. if ( l > HUF_DECBITS ) {
  181. var pl = hdecod[ ( c >> ( l - HUF_DECBITS ) ) ];
  182. if ( pl.len ) {
  183. throw 'Invalid table entry';
  184. }
  185. pl.lit ++;
  186. if ( pl.p ) {
  187. var p = pl.p;
  188. pl.p = new Array( pl.lit );
  189. for ( var i = 0; i < pl.lit - 1; ++ i ) {
  190. pl.p[ i ] = p[ i ];
  191. }
  192. } else {
  193. pl.p = new Array( 1 );
  194. }
  195. pl.p[ pl.lit - 1 ] = im;
  196. } else if ( l ) {
  197. var plOffset = 0;
  198. for ( var i = 1 << ( HUF_DECBITS - l ); i > 0; i -- ) {
  199. var pl = hdecod[ ( c << ( HUF_DECBITS - l ) ) + plOffset ];
  200. if ( pl.len || pl.p ) {
  201. throw 'Invalid table entry';
  202. }
  203. pl.len = l;
  204. pl.lit = im;
  205. plOffset ++;
  206. }
  207. }
  208. }
  209. return true;
  210. }
  211. const getCharReturn = { c: 0, lc: 0 };
  212. function getChar( c, lc, uInt8Array, inOffset ) {
  213. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  214. lc += 8;
  215. getCharReturn.c = c;
  216. getCharReturn.lc = lc;
  217. }
  218. const getCodeReturn = { c: 0, lc: 0 };
  219. function getCode( po, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outBufferOffset, outBufferEndOffset ) {
  220. if ( po == rlc ) {
  221. if ( lc < 8 ) {
  222. getChar( c, lc, uInt8Array, inOffset );
  223. c = getCharReturn.c;
  224. lc = getCharReturn.lc;
  225. }
  226. lc -= 8;
  227. var cs = ( c >> lc );
  228. var cs = new Uint8Array([cs])[0];
  229. if ( outBufferOffset.value + cs > outBufferEndOffset ) {
  230. return false;
  231. }
  232. var s = outBuffer[ outBufferOffset.value - 1 ];
  233. while ( cs-- > 0 ) {
  234. outBuffer[ outBufferOffset.value ++ ] = s;
  235. }
  236. } else if ( outBufferOffset.value < outBufferEndOffset ) {
  237. outBuffer[ outBufferOffset.value ++ ] = po;
  238. } else {
  239. return false;
  240. }
  241. getCodeReturn.c = c;
  242. getCodeReturn.lc = lc;
  243. }
  244. var NBITS = 16;
  245. var A_OFFSET = 1 << ( NBITS - 1 );
  246. var M_OFFSET = 1 << ( NBITS - 1 );
  247. var MOD_MASK = ( 1 << NBITS ) - 1;
  248. function UInt16( value ) {
  249. return ( value & 0xFFFF );
  250. }
  251. function Int16( value ) {
  252. var ref = UInt16( value );
  253. return ( ref > 0x7FFF ) ? ref - 0x10000 : ref;
  254. }
  255. const wdec14Return = { a: 0, b: 0 };
  256. function wdec14( l, h ) {
  257. var ls = Int16( l );
  258. var hs = Int16( h );
  259. var hi = hs;
  260. var ai = ls + ( hi & 1 ) + ( hi >> 1 );
  261. var as = ai;
  262. var bs = ai - hi;
  263. wdec14Return.a = as;
  264. wdec14Return.b = bs;
  265. }
  266. function wav2Decode( j, buffer, nx, ox, ny, oy, mx ) {
  267. var n = ( nx > ny ) ? ny : nx;
  268. var p = 1;
  269. var p2;
  270. while ( p <= n ) p <<= 1;
  271. p >>= 1;
  272. p2 = p;
  273. p >>= 1;
  274. while ( p >= 1 ) {
  275. var py = 0;
  276. var ey = py + oy * ( ny - p2 );
  277. var oy1 = oy * p;
  278. var oy2 = oy * p2;
  279. var ox1 = ox * p;
  280. var ox2 = ox * p2;
  281. var i00, i01, i10, i11;
  282. for ( ; py <= ey; py += oy2 ) {
  283. var px = py;
  284. var ex = py + ox * ( nx - p2 );
  285. for ( ; px <= ex; px += ox2 ) {
  286. var p01 = px + ox1;
  287. var p10 = px + oy1;
  288. var p11 = p10 + ox1;
  289. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  290. i00 = wdec14Return.a;
  291. i10 = wdec14Return.b;
  292. wdec14( buffer[ p01 + j ], buffer[ p11 + j ] );
  293. i01 = wdec14Return.a;
  294. i11 = wdec14Return.b;
  295. wdec14( i00, i01 );
  296. buffer[ px + j ] = wdec14Return.a;
  297. buffer[ p01 + j ] = wdec14Return.b;
  298. wdec14( i10, i11 );
  299. buffer[ p10 + j ] = wdec14Return.a;
  300. buffer[ p11 + j ] = wdec14Return.b;
  301. }
  302. if ( nx & p ) {
  303. var p10 = px + oy1;
  304. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  305. i00 = wdec14Return.a;
  306. buffer[ p10 + j ] = wdec14Return.b;
  307. buffer[ px + j ] = i00;
  308. }
  309. }
  310. if ( ny & p ) {
  311. var px = py;
  312. var ex = py + ox * ( nx - p2 );
  313. for ( ; px <= ex; px += ox2 ) {
  314. var p01 = px + ox1;
  315. wdec14( buffer[ px + j ], buffer[ p01 + j ] );
  316. i00 = wdec14Return.a;
  317. buffer[ p01 + j ] = wdec14Return.b;
  318. buffer[ px + j ] = i00;
  319. }
  320. }
  321. p2 = p;
  322. p >>= 1;
  323. }
  324. return py;
  325. }
  326. function hufDecode( encodingTable, decodingTable, uInt8Array, inDataView, inOffset, ni, rlc, no, outBuffer, outOffset ) {
  327. var c = 0;
  328. var lc = 0;
  329. var outBufferEndOffset = no;
  330. var inOffsetEnd = Math.trunc( inOffset.value + ( ni + 7 ) / 8 );
  331. while ( inOffset.value < inOffsetEnd ) {
  332. getChar( c, lc, uInt8Array, inOffset );
  333. c = getCharReturn.c;
  334. lc = getCharReturn.lc;
  335. while ( lc >= HUF_DECBITS ) {
  336. var index = ( c >> ( lc - HUF_DECBITS ) ) & HUF_DECMASK;
  337. var pl = decodingTable[ index ];
  338. if ( pl.len ) {
  339. lc -= pl.len;
  340. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  341. c = getCodeReturn.c;
  342. lc = getCodeReturn.lc;
  343. } else {
  344. if ( ! pl.p ) {
  345. throw 'hufDecode issues';
  346. }
  347. var j;
  348. for ( j = 0; j < pl.lit; j ++ ) {
  349. var l = hufLength( encodingTable[ pl.p[ j ] ] );
  350. while ( lc < l && inOffset.value < inOffsetEnd ) {
  351. getChar( c, lc, uInt8Array, inOffset );
  352. c = getCharReturn.c;
  353. lc = getCharReturn.lc;
  354. }
  355. if ( lc >= l ) {
  356. if ( hufCode( encodingTable[ pl.p[ j ] ] ) == ( ( c >> ( lc - l ) ) & ( ( 1 << l ) - 1 ) ) ) {
  357. lc -= l;
  358. getCode( pl.p[ j ], rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  359. c = getCodeReturn.c;
  360. lc = getCodeReturn.lc;
  361. break;
  362. }
  363. }
  364. }
  365. if ( j == pl.lit ) {
  366. throw 'hufDecode issues';
  367. }
  368. }
  369. }
  370. }
  371. var i = ( 8 - ni ) & 7;
  372. c >>= i;
  373. lc -= i;
  374. while ( lc > 0 ) {
  375. var pl = decodingTable[ ( c << ( HUF_DECBITS - lc ) ) & HUF_DECMASK ];
  376. if ( pl.len ) {
  377. lc -= pl.len;
  378. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  379. c = getCodeReturn.c;
  380. lc = getCodeReturn.lc;
  381. } else {
  382. throw 'hufDecode issues';
  383. }
  384. }
  385. return true;
  386. }
  387. function hufUncompress( uInt8Array, inDataView, inOffset, nCompressed, outBuffer, outOffset, nRaw ) {
  388. var initialInOffset = inOffset.value;
  389. var im = parseUint32( inDataView, inOffset );
  390. var iM = parseUint32( inDataView, inOffset );
  391. inOffset.value += 4;
  392. var nBits = parseUint32( inDataView, inOffset );
  393. inOffset.value += 4;
  394. if ( im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE ) {
  395. throw 'Something wrong with HUF_ENCSIZE';
  396. }
  397. var freq = new Array( HUF_ENCSIZE );
  398. var hdec = new Array( HUF_DECSIZE );
  399. hufClearDecTable( hdec );
  400. var ni = nCompressed - ( inOffset.value - initialInOffset );
  401. hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, freq );
  402. if ( nBits > 8 * ( nCompressed - ( inOffset.value - initialInOffset ) ) ) {
  403. throw 'Something wrong with hufUncompress';
  404. }
  405. hufBuildDecTable( freq, im, iM, hdec );
  406. hufDecode( freq, hdec, uInt8Array, inDataView, inOffset, nBits, iM, nRaw, outBuffer, outOffset );
  407. }
  408. function applyLut( lut, data, nData ) {
  409. for ( var i = 0; i < nData; ++ i ) {
  410. data[ i ] = lut[ data[ i ] ];
  411. }
  412. }
  413. function decompressPIZ( outBuffer, outOffset, uInt8Array, inDataView, inOffset, tmpBufSize, num_channels, exrChannelInfos, dataWidth, num_lines ) {
  414. var bitmap = new Uint8Array( BITMAP_SIZE );
  415. var minNonZero = parseUint16( inDataView, inOffset );
  416. var maxNonZero = parseUint16( inDataView, inOffset );
  417. if ( maxNonZero >= BITMAP_SIZE ) {
  418. throw 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE';
  419. }
  420. if ( minNonZero <= maxNonZero ) {
  421. for ( var i = 0; i < maxNonZero - minNonZero + 1; i ++ ) {
  422. bitmap[ i + minNonZero ] = parseUint8( inDataView, inOffset );
  423. }
  424. }
  425. var lut = new Uint16Array( USHORT_RANGE );
  426. var maxValue = reverseLutFromBitmap( bitmap, lut );
  427. var length = parseUint32( inDataView, inOffset );
  428. hufUncompress( uInt8Array, inDataView, inOffset, length, outBuffer, outOffset, tmpBufSize );
  429. var pizChannelData = new Array( num_channels );
  430. var outBufferEnd = 0;
  431. for ( var i = 0; i < num_channels; i ++ ) {
  432. var exrChannelInfo = exrChannelInfos[ i ];
  433. var pixelSize = 2; // assumes HALF_FLOAT
  434. pizChannelData[ i ] = {};
  435. pizChannelData[ i ][ 'start' ] = outBufferEnd;
  436. pizChannelData[ i ][ 'end' ] = pizChannelData[ i ][ 'start' ];
  437. pizChannelData[ i ][ 'nx' ] = dataWidth;
  438. pizChannelData[ i ][ 'ny' ] = num_lines;
  439. pizChannelData[ i ][ 'size' ] = 1;
  440. outBufferEnd += pizChannelData[ i ].nx * pizChannelData[ i ].ny * pizChannelData[ i ].size;
  441. }
  442. var fooOffset = 0;
  443. for ( var i = 0; i < num_channels; i ++ ) {
  444. for ( var j = 0; j < pizChannelData[ i ].size; ++ j ) {
  445. fooOffset += wav2Decode(
  446. j + fooOffset,
  447. outBuffer,
  448. pizChannelData[ i ].nx,
  449. pizChannelData[ i ].size,
  450. pizChannelData[ i ].ny,
  451. pizChannelData[ i ].nx * pizChannelData[ i ].size,
  452. maxValue
  453. );
  454. }
  455. }
  456. applyLut( lut, outBuffer, outBufferEnd );
  457. return true;
  458. }
  459. function parseNullTerminatedString( buffer, offset ) {
  460. var uintBuffer = new Uint8Array( buffer );
  461. var endOffset = 0;
  462. while ( uintBuffer[ offset.value + endOffset ] != 0 ) {
  463. endOffset += 1;
  464. }
  465. var stringValue = new TextDecoder().decode(
  466. uintBuffer.slice( offset.value, offset.value + endOffset )
  467. );
  468. offset.value = offset.value + endOffset + 1;
  469. return stringValue;
  470. }
  471. function parseFixedLengthString( buffer, offset, size ) {
  472. var stringValue = new TextDecoder().decode(
  473. new Uint8Array( buffer ).slice( offset.value, offset.value + size )
  474. );
  475. offset.value = offset.value + size;
  476. return stringValue;
  477. }
  478. function parseUlong( dataView, offset ) {
  479. var uLong = dataView.getUint32( 0, true );
  480. offset.value = offset.value + ULONG_SIZE;
  481. return uLong;
  482. }
  483. function parseUint32( dataView, offset ) {
  484. var Uint32 = dataView.getUint32(offset.value, true);
  485. offset.value = offset.value + INT32_SIZE;
  486. return Uint32;
  487. }
  488. function parseUint8Array( uInt8Array, offset ) {
  489. var Uint8 = uInt8Array[offset.value];
  490. offset.value = offset.value + INT8_SIZE;
  491. return Uint8;
  492. }
  493. function parseUint8( dataView, offset ) {
  494. var Uint8 = dataView.getUint8(offset.value);
  495. offset.value = offset.value + INT8_SIZE;
  496. return Uint8;
  497. }
  498. function parseFloat32( dataView, offset ) {
  499. var float = dataView.getFloat32(offset.value, true);
  500. offset.value += FLOAT32_SIZE;
  501. return float;
  502. }
  503. // https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript
  504. function decodeFloat16( binary ) {
  505. var exponent = ( binary & 0x7C00 ) >> 10,
  506. fraction = binary & 0x03FF;
  507. return ( binary >> 15 ? - 1 : 1 ) * (
  508. exponent ?
  509. (
  510. exponent === 0x1F ?
  511. fraction ? NaN : Infinity :
  512. Math.pow( 2, exponent - 15 ) * ( 1 + fraction / 0x400 )
  513. ) :
  514. 6.103515625e-5 * ( fraction / 0x400 )
  515. );
  516. }
  517. function parseUint16( dataView, offset ) {
  518. var Uint16 = dataView.getUint16( offset.value, true );
  519. offset.value += INT16_SIZE;
  520. return Uint16;
  521. }
  522. function parseFloat16( buffer, offset ) {
  523. return decodeFloat16( parseUint16( buffer, offset) );
  524. }
  525. function parseChlist( dataView, buffer, offset, size ) {
  526. var startOffset = offset.value;
  527. var channels = [];
  528. while ( offset.value < ( startOffset + size - 1 ) ) {
  529. var name = parseNullTerminatedString( buffer, offset );
  530. var pixelType = parseUint32( dataView, offset ); // TODO: Cast this to UINT, HALF or FLOAT
  531. var pLinear = parseUint8( dataView, offset );
  532. offset.value += 3; // reserved, three chars
  533. var xSampling = parseUint32( dataView, offset );
  534. var ySampling = parseUint32( dataView, offset );
  535. channels.push( {
  536. name: name,
  537. pixelType: pixelType,
  538. pLinear: pLinear,
  539. xSampling: xSampling,
  540. ySampling: ySampling
  541. } );
  542. }
  543. offset.value += 1;
  544. return channels;
  545. }
  546. function parseChromaticities( dataView, offset ) {
  547. var redX = parseFloat32( dataView, offset );
  548. var redY = parseFloat32( dataView, offset );
  549. var greenX = parseFloat32( dataView, offset );
  550. var greenY = parseFloat32( dataView, offset );
  551. var blueX = parseFloat32( dataView, offset );
  552. var blueY = parseFloat32( dataView, offset );
  553. var whiteX = parseFloat32( dataView, offset );
  554. var whiteY = parseFloat32( dataView, offset );
  555. return { redX: redX, redY: redY, greenX: greenX, greenY: greenY, blueX: blueX, blueY: blueY, whiteX: whiteX, whiteY: whiteY };
  556. }
  557. function parseCompression( dataView, offset ) {
  558. var compressionCodes = [
  559. 'NO_COMPRESSION',
  560. 'RLE_COMPRESSION',
  561. 'ZIPS_COMPRESSION',
  562. 'ZIP_COMPRESSION',
  563. 'PIZ_COMPRESSION',
  564. 'PXR24_COMPRESSION',
  565. 'B44_COMPRESSION',
  566. 'B44A_COMPRESSION',
  567. 'DWAA_COMPRESSION',
  568. 'DWAB_COMPRESSION'
  569. ];
  570. var compression = parseUint8( dataView, offset );
  571. return compressionCodes[ compression ];
  572. }
  573. function parseBox2i( dataView, offset ) {
  574. var xMin = parseUint32( dataView, offset );
  575. var yMin = parseUint32( dataView, offset );
  576. var xMax = parseUint32( dataView, offset );
  577. var yMax = parseUint32( dataView, offset );
  578. return { xMin: xMin, yMin: yMin, xMax: xMax, yMax: yMax };
  579. }
  580. function parseLineOrder( dataView, offset ) {
  581. var lineOrders = [
  582. 'INCREASING_Y'
  583. ];
  584. var lineOrder = parseUint8( dataView, offset );
  585. return lineOrders[ lineOrder ];
  586. }
  587. function parseV2f( dataView, offset ) {
  588. var x = parseFloat32( dataView, offset );
  589. var y = parseFloat32( dataView, offset );
  590. return [ x, y ];
  591. }
  592. function parseValue( dataView, buffer, offset, type, size ) {
  593. if ( type === 'string' || type === 'iccProfile' ) {
  594. return parseFixedLengthString( buffer, offset, size );
  595. } else if ( type === 'chlist' ) {
  596. return parseChlist( dataView, buffer, offset, size );
  597. } else if ( type === 'chromaticities' ) {
  598. return parseChromaticities( dataView, offset );
  599. } else if ( type === 'compression' ) {
  600. return parseCompression( dataView, offset );
  601. } else if ( type === 'box2i' ) {
  602. return parseBox2i( dataView, offset );
  603. } else if ( type === 'lineOrder' ) {
  604. return parseLineOrder( dataView, offset );
  605. } else if ( type === 'float' ) {
  606. return parseFloat32( dataView, offset );
  607. } else if ( type === 'v2f' ) {
  608. return parseV2f( dataView, offset );
  609. } else if ( type === 'int' ) {
  610. return parseUint32( dataView, offset );
  611. } else {
  612. throw 'Cannot parse value for unsupported type: ' + type;
  613. }
  614. }
  615. var bufferDataView = new DataView(buffer);
  616. var uInt8Array = new Uint8Array(buffer);
  617. var EXRHeader = {};
  618. var magic = bufferDataView.getUint32( 0, true );
  619. var versionByteZero = bufferDataView.getUint8( 4, true );
  620. var fullMask = bufferDataView.getUint8( 5, true );
  621. // start of header
  622. var offset = { value: 8 }; // start at 8, after magic stuff
  623. var keepReading = true;
  624. while ( keepReading ) {
  625. var attributeName = parseNullTerminatedString( buffer, offset );
  626. if ( attributeName == 0 ) {
  627. keepReading = false;
  628. } else {
  629. var attributeType = parseNullTerminatedString( buffer, offset );
  630. var attributeSize = parseUint32( bufferDataView, offset );
  631. var attributeValue = parseValue( bufferDataView, buffer, offset, attributeType, attributeSize );
  632. EXRHeader[ attributeName ] = attributeValue;
  633. }
  634. }
  635. // offsets
  636. var dataWindowHeight = EXRHeader.dataWindow.yMax + 1;
  637. var scanlineBlockSize = 1; // 1 for NO_COMPRESSION
  638. if ( EXRHeader.compression === 'PIZ_COMPRESSION' ) {
  639. scanlineBlockSize = 32;
  640. }
  641. var numBlocks = dataWindowHeight / scanlineBlockSize;
  642. for ( var i = 0; i < numBlocks; i ++ ) {
  643. var scanlineOffset = parseUlong( bufferDataView, offset );
  644. }
  645. // we should be passed the scanline offset table, start reading pixel data
  646. var width = EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1;
  647. var height = EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1;
  648. var numChannels = EXRHeader.channels.length;
  649. var byteArray = new Float32Array( width * height * numChannels );
  650. var channelOffsets = {
  651. R: 0,
  652. G: 1,
  653. B: 2,
  654. A: 3
  655. };
  656. if ( EXRHeader.compression === 'NO_COMPRESSION' ) {
  657. for ( var y = 0; y < height; y ++ ) {
  658. var y_scanline = parseUint32( bufferDataView, offset );
  659. var dataSize = parseUint32( bufferDataView, offset );
  660. for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
  661. var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
  662. if ( EXRHeader.channels[ channelID ].pixelType === 1 ) {
  663. // HALF
  664. for ( var x = 0; x < width; x ++ ) {
  665. var val = parseFloat16( bufferDataView, offset );
  666. byteArray[ ( ( ( height - y_scanline ) * ( width * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
  667. }
  668. } else {
  669. throw 'EXRLoader._parser: unsupported pixelType ' + EXRHeader.channels[ channelID ].pixelType + '. Only pixelType is 1 (HALF) is supported.';
  670. }
  671. }
  672. }
  673. } else if ( EXRHeader.compression === 'PIZ_COMPRESSION' ) {
  674. for ( var scanlineBlockIdx = 0; scanlineBlockIdx < height / scanlineBlockSize; scanlineBlockIdx ++ ) {
  675. var line_no = parseUint32( bufferDataView, offset );
  676. var data_len = parseUint32( bufferDataView, offset );
  677. var tmpBufferSize = width * scanlineBlockSize * ( EXRHeader.channels.length * BYTES_PER_HALF );
  678. var tmpBuffer = new Uint16Array( tmpBufferSize );
  679. var tmpOffset = { value: 0 };
  680. decompressPIZ( tmpBuffer, tmpOffset, uInt8Array, bufferDataView, offset, tmpBufferSize, numChannels, EXRHeader.channels, width, scanlineBlockSize );
  681. for ( var line_y = 0; line_y < scanlineBlockSize; line_y ++ ) {
  682. for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
  683. var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
  684. if ( EXRHeader.channels[ channelID ].pixelType === 1 ) {
  685. // HALF
  686. for ( var x = 0; x < width; x ++ ) {
  687. var val = decodeFloat16( tmpBuffer[ ( channelID * ( scanlineBlockSize * width ) ) + ( line_y * width ) + x ] );
  688. var true_y = line_y + ( scanlineBlockIdx * scanlineBlockSize );
  689. byteArray[ ( ( ( height - true_y ) * ( width * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
  690. }
  691. } else {
  692. throw 'EXRLoader._parser: unsupported pixelType ' + EXRHeader.channels[ channelID ].pixelType + '. Only pixelType is 1 (HALF) is supported.';
  693. }
  694. }
  695. }
  696. }
  697. } else {
  698. throw 'EXRLoader._parser: ' + EXRHeader.compression + ' is unsupported';
  699. }
  700. return {
  701. header: EXRHeader,
  702. width: width,
  703. height: height,
  704. data: byteArray,
  705. format: EXRHeader.channels.length == 4 ? THREE.RGBAFormat : THREE.RGBFormat,
  706. type: THREE.FloatType
  707. };
  708. };