123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379 |
- 'use strict';
- const regTransformTypes = /matrix|translate|scale|rotate|skewX|skewY/;
- const regTransformSplit =
- /\s*(matrix|translate|scale|rotate|skewX|skewY)\s*\(\s*(.+?)\s*\)[\s,]*/;
- const regNumericValues = /[-+]?(?:\d*\.\d+|\d+\.?)(?:[eE][-+]?\d+)?/g;
- /**
- * @typedef {{ name: string, data: Array<number> }} TransformItem
- */
- /**
- * Convert transform string to JS representation.
- *
- * @type {(transformString: string) => Array<TransformItem>}
- */
- exports.transform2js = (transformString) => {
- // JS representation of the transform data
- /**
- * @type {Array<TransformItem>}
- */
- const transforms = [];
- // current transform context
- /**
- * @type {null | TransformItem}
- */
- let current = null;
- // split value into ['', 'translate', '10 50', '', 'scale', '2', '', 'rotate', '-45', '']
- for (const item of transformString.split(regTransformSplit)) {
- var num;
- if (item) {
- // if item is a translate function
- if (regTransformTypes.test(item)) {
- // then collect it and change current context
- current = { name: item, data: [] };
- transforms.push(current);
- // else if item is data
- } else {
- // then split it into [10, 50] and collect as context.data
- // eslint-disable-next-line no-cond-assign
- while ((num = regNumericValues.exec(item))) {
- num = Number(num);
- if (current != null) {
- current.data.push(num);
- }
- }
- }
- }
- }
- // return empty array if broken transform (no data)
- return current == null || current.data.length == 0 ? [] : transforms;
- };
- /**
- * Multiply transforms into one.
- *
- * @type {(transforms: Array<TransformItem>) => TransformItem}
- */
- exports.transformsMultiply = (transforms) => {
- // convert transforms objects to the matrices
- const matrixData = transforms.map((transform) => {
- if (transform.name === 'matrix') {
- return transform.data;
- }
- return transformToMatrix(transform);
- });
- // multiply all matrices into one
- const matrixTransform = {
- name: 'matrix',
- data:
- matrixData.length > 0 ? matrixData.reduce(multiplyTransformMatrices) : [],
- };
- return matrixTransform;
- };
- /**
- * math utilities in radians.
- */
- const mth = {
- /**
- * @type {(deg: number) => number}
- */
- rad: (deg) => {
- return (deg * Math.PI) / 180;
- },
- /**
- * @type {(rad: number) => number}
- */
- deg: (rad) => {
- return (rad * 180) / Math.PI;
- },
- /**
- * @type {(deg: number) => number}
- */
- cos: (deg) => {
- return Math.cos(mth.rad(deg));
- },
- /**
- * @type {(val: number, floatPrecision: number) => number}
- */
- acos: (val, floatPrecision) => {
- return Number(mth.deg(Math.acos(val)).toFixed(floatPrecision));
- },
- /**
- * @type {(deg: number) => number}
- */
- sin: (deg) => {
- return Math.sin(mth.rad(deg));
- },
- /**
- * @type {(val: number, floatPrecision: number) => number}
- */
- asin: (val, floatPrecision) => {
- return Number(mth.deg(Math.asin(val)).toFixed(floatPrecision));
- },
- /**
- * @type {(deg: number) => number}
- */
- tan: (deg) => {
- return Math.tan(mth.rad(deg));
- },
- /**
- * @type {(val: number, floatPrecision: number) => number}
- */
- atan: (val, floatPrecision) => {
- return Number(mth.deg(Math.atan(val)).toFixed(floatPrecision));
- },
- };
- /**
- * @typedef {{
- * convertToShorts: boolean,
- * floatPrecision: number,
- * transformPrecision: number,
- * matrixToTransform: boolean,
- * shortTranslate: boolean,
- * shortScale: boolean,
- * shortRotate: boolean,
- * removeUseless: boolean,
- * collapseIntoOne: boolean,
- * leadingZero: boolean,
- * negativeExtraSpace: boolean,
- * }} TransformParams
- */
- /**
- * Decompose matrix into simple transforms. See
- * https://frederic-wang.fr/decomposition-of-2d-transform-matrices.html
- *
- * @type {(transform: TransformItem, params: TransformParams) => Array<TransformItem>}
- */
- exports.matrixToTransform = (transform, params) => {
- let floatPrecision = params.floatPrecision;
- let data = transform.data;
- let transforms = [];
- let sx = Number(
- Math.hypot(data[0], data[1]).toFixed(params.transformPrecision)
- );
- let sy = Number(
- ((data[0] * data[3] - data[1] * data[2]) / sx).toFixed(
- params.transformPrecision
- )
- );
- let colsSum = data[0] * data[2] + data[1] * data[3];
- let rowsSum = data[0] * data[1] + data[2] * data[3];
- let scaleBefore = rowsSum != 0 || sx == sy;
- // [..., ..., ..., ..., tx, ty] → translate(tx, ty)
- if (data[4] || data[5]) {
- transforms.push({
- name: 'translate',
- data: data.slice(4, data[5] ? 6 : 5),
- });
- }
- // [sx, 0, tan(a)·sy, sy, 0, 0] → skewX(a)·scale(sx, sy)
- if (!data[1] && data[2]) {
- transforms.push({
- name: 'skewX',
- data: [mth.atan(data[2] / sy, floatPrecision)],
- });
- // [sx, sx·tan(a), 0, sy, 0, 0] → skewY(a)·scale(sx, sy)
- } else if (data[1] && !data[2]) {
- transforms.push({
- name: 'skewY',
- data: [mth.atan(data[1] / data[0], floatPrecision)],
- });
- sx = data[0];
- sy = data[3];
- // [sx·cos(a), sx·sin(a), sy·-sin(a), sy·cos(a), x, y] → rotate(a[, cx, cy])·(scale or skewX) or
- // [sx·cos(a), sy·sin(a), sx·-sin(a), sy·cos(a), x, y] → scale(sx, sy)·rotate(a[, cx, cy]) (if !scaleBefore)
- } else if (!colsSum || (sx == 1 && sy == 1) || !scaleBefore) {
- if (!scaleBefore) {
- sx = (data[0] < 0 ? -1 : 1) * Math.hypot(data[0], data[2]);
- sy = (data[3] < 0 ? -1 : 1) * Math.hypot(data[1], data[3]);
- transforms.push({ name: 'scale', data: [sx, sy] });
- }
- var angle = Math.min(Math.max(-1, data[0] / sx), 1),
- rotate = [
- mth.acos(angle, floatPrecision) *
- ((scaleBefore ? 1 : sy) * data[1] < 0 ? -1 : 1),
- ];
- if (rotate[0]) transforms.push({ name: 'rotate', data: rotate });
- if (rowsSum && colsSum)
- transforms.push({
- name: 'skewX',
- data: [mth.atan(colsSum / (sx * sx), floatPrecision)],
- });
- // rotate(a, cx, cy) can consume translate() within optional arguments cx, cy (rotation point)
- if (rotate[0] && (data[4] || data[5])) {
- transforms.shift();
- var cos = data[0] / sx,
- sin = data[1] / (scaleBefore ? sx : sy),
- x = data[4] * (scaleBefore ? 1 : sy),
- y = data[5] * (scaleBefore ? 1 : sx),
- denom =
- (Math.pow(1 - cos, 2) + Math.pow(sin, 2)) *
- (scaleBefore ? 1 : sx * sy);
- rotate.push(((1 - cos) * x - sin * y) / denom);
- rotate.push(((1 - cos) * y + sin * x) / denom);
- }
- // Too many transformations, return original matrix if it isn't just a scale/translate
- } else if (data[1] || data[2]) {
- return [transform];
- }
- if ((scaleBefore && (sx != 1 || sy != 1)) || !transforms.length)
- transforms.push({
- name: 'scale',
- data: sx == sy ? [sx] : [sx, sy],
- });
- return transforms;
- };
- /**
- * Convert transform to the matrix data.
- *
- * @type {(transform: TransformItem) => Array<number> }
- */
- const transformToMatrix = (transform) => {
- if (transform.name === 'matrix') {
- return transform.data;
- }
- switch (transform.name) {
- case 'translate':
- // [1, 0, 0, 1, tx, ty]
- return [1, 0, 0, 1, transform.data[0], transform.data[1] || 0];
- case 'scale':
- // [sx, 0, 0, sy, 0, 0]
- return [
- transform.data[0],
- 0,
- 0,
- transform.data[1] || transform.data[0],
- 0,
- 0,
- ];
- case 'rotate':
- // [cos(a), sin(a), -sin(a), cos(a), x, y]
- var cos = mth.cos(transform.data[0]),
- sin = mth.sin(transform.data[0]),
- cx = transform.data[1] || 0,
- cy = transform.data[2] || 0;
- return [
- cos,
- sin,
- -sin,
- cos,
- (1 - cos) * cx + sin * cy,
- (1 - cos) * cy - sin * cx,
- ];
- case 'skewX':
- // [1, 0, tan(a), 1, 0, 0]
- return [1, 0, mth.tan(transform.data[0]), 1, 0, 0];
- case 'skewY':
- // [1, tan(a), 0, 1, 0, 0]
- return [1, mth.tan(transform.data[0]), 0, 1, 0, 0];
- default:
- throw Error(`Unknown transform ${transform.name}`);
- }
- };
- /**
- * Applies transformation to an arc. To do so, we represent ellipse as a matrix, multiply it
- * by the transformation matrix and use a singular value decomposition to represent in a form
- * rotate(θ)·scale(a b)·rotate(φ). This gives us new ellipse params a, b and θ.
- * SVD is being done with the formulae provided by Wolffram|Alpha (svd {{m0, m2}, {m1, m3}})
- *
- * @type {(
- * cursor: [x: number, y: number],
- * arc: Array<number>,
- * transform: Array<number>
- * ) => Array<number>}
- */
- exports.transformArc = (cursor, arc, transform) => {
- const x = arc[5] - cursor[0];
- const y = arc[6] - cursor[1];
- let a = arc[0];
- let b = arc[1];
- const rot = (arc[2] * Math.PI) / 180;
- const cos = Math.cos(rot);
- const sin = Math.sin(rot);
- // skip if radius is 0
- if (a > 0 && b > 0) {
- let h =
- Math.pow(x * cos + y * sin, 2) / (4 * a * a) +
- Math.pow(y * cos - x * sin, 2) / (4 * b * b);
- if (h > 1) {
- h = Math.sqrt(h);
- a *= h;
- b *= h;
- }
- }
- const ellipse = [a * cos, a * sin, -b * sin, b * cos, 0, 0];
- const m = multiplyTransformMatrices(transform, ellipse);
- // Decompose the new ellipse matrix
- const lastCol = m[2] * m[2] + m[3] * m[3];
- const squareSum = m[0] * m[0] + m[1] * m[1] + lastCol;
- const root =
- Math.hypot(m[0] - m[3], m[1] + m[2]) * Math.hypot(m[0] + m[3], m[1] - m[2]);
- if (!root) {
- // circle
- arc[0] = arc[1] = Math.sqrt(squareSum / 2);
- arc[2] = 0;
- } else {
- const majorAxisSqr = (squareSum + root) / 2;
- const minorAxisSqr = (squareSum - root) / 2;
- const major = Math.abs(majorAxisSqr - lastCol) > 1e-6;
- const sub = (major ? majorAxisSqr : minorAxisSqr) - lastCol;
- const rowsSum = m[0] * m[2] + m[1] * m[3];
- const term1 = m[0] * sub + m[2] * rowsSum;
- const term2 = m[1] * sub + m[3] * rowsSum;
- arc[0] = Math.sqrt(majorAxisSqr);
- arc[1] = Math.sqrt(minorAxisSqr);
- arc[2] =
- (((major ? term2 < 0 : term1 > 0) ? -1 : 1) *
- Math.acos((major ? term1 : term2) / Math.hypot(term1, term2)) *
- 180) /
- Math.PI;
- }
- if (transform[0] < 0 !== transform[3] < 0) {
- // Flip the sweep flag if coordinates are being flipped horizontally XOR vertically
- arc[4] = 1 - arc[4];
- }
- return arc;
- };
- /**
- * Multiply transformation matrices.
- *
- * @type {(a: Array<number>, b: Array<number>) => Array<number>}
- */
- const multiplyTransformMatrices = (a, b) => {
- return [
- a[0] * b[0] + a[2] * b[1],
- a[1] * b[0] + a[3] * b[1],
- a[0] * b[2] + a[2] * b[3],
- a[1] * b[2] + a[3] * b[3],
- a[0] * b[4] + a[2] * b[5] + a[4],
- a[1] * b[4] + a[3] * b[5] + a[5],
- ];
- };
|